Recent Developments on Quarkonia Production from RHIC

Abhisek Sen
University of Tennessee
SGW2014, Padova, Italy

Outline

- Motivation: QGP and Quarkonia
- * Experiments at RHIC: PHENIX and STAR
- * Review of recent results
 - p+p, d+A and A+A
- * Outlook
- Summary

Quarkonia: A probe to QGP

Matsui & Satz PLB 178, 416(1986

$$\lambda_D(T) = \sqrt{\frac{2}{9\pi\alpha_{\rm eff}}} \frac{1}{T}$$
1/ $\langle \mathbf{r} \rangle$

 Y(1S)

 χ_b

 J/ψ , $\Upsilon(2S)$

χ_c, χ'_b, ψ', Υ(3S)

Mocs

Mocsy & Petreczky PRL. 99, 211602 (2007)

Loosely bound states melt first!

Successive suppression of individual states provides a "thermometer" of the QGP

Relativistic Heavy Ion Collider

14 years, 14 Runs, 10 Energies, 7 Combination of Species

2001-2014	
Energies(CMS) GeV	Species
7.7, 9.2, 19.6, 22.4, 27, 39, 62.4, 130, 200, 500	p+p, Au+Au, d+Au, Cu+Cu, Cu+Au, U+U, He3+Au

The Experiments

PHENIX

Acceptance: $|\eta| < 0.35$, $1.2 < |\eta| < 2.2$

STAR

Acceptance: $-1 < \eta < 1$

New FVTX detector at PHENIX

Forward Silicon Vertex Tracker in PHENIX

Improved mass resolution and background rejection

ψ' in Forward Rapidity

First measurements of $\psi'/J/\psi$ in the forward rapidity at RHIC. Consistent with the world data.

Y in p+p from STAR

Upsilon signal upto 10 GeV

J/ψ suppression in d+Au

A reasonable agreement with EPS09 nPDF + σ_{br} = 4 mb for central collisions but not peripheral.

Nuclear PDF seems to have stronger than linear nuclear thickness dependent.

$J/\psi R_{dAu} vs. p_T$ (all centrality)

 $R_{\rm dAu}$ rises out to $p_{\rm T}$ ~5 GeV/c at all rapidities.

Largest disagreement with models is at backward rapidity.

Shadowing + σ_{br} model (no Cronin) does not match the qualitative trend.

Model by Kopeliovich et al. includes Cronin and σ_{br} prediction, qualitatively matches the p_T shape.

Phys. Rev. C 87, 034904 (2013)

$\psi'R_{dAu}$

PRL 111, 202301 (2013)

Strong suppression of y' with increasing N_{coll} at the mid-rapidity.

Very unexpected results!!

Nuclear crossing time

Proper time in nucleus (τ) [fm/c]

PRL 111, 202301 (2013)

After ccbar formation, the pair expands as it crosses nucleus. Break-up makes sense **ONLY** on time scales larger than charm pair formation time.

Formation time $\sim 0.15 \text{fm}$

Nuclear crossing time ~0.05 fm at RHIC at midrapidity

Precursor crosses nucleus before final state forms! ψ' / J/ψ ratio should be ~1

Suppression outside the nucleus?

Small QGP? Or co-movers?

Confirmed by LHC

Similar affect seen at ALICE experiment. Even a smaller nuclear crossing time at LHC.

Energy variation (62 and 39 GeV)

Similarity in J/ψ R_{AA} at different energies is due to the competing effects of dissociation and regeneration.

J/ψ at LHC

Large R_{AA} at low pT and large v₂ confirms higher recombination at LHC energies

Cu+Au (new Geometry)

Higher suppression in region of lower particle density. Similar to d+Au collisions.

Suppression due Debye screening would have gone in other direction.

Cu-going-side/Au-going-side

Au-going direction:

low-x partons in Cu nucleus * high-x partons in Au nucleus

Cu-going direction:

low-x partons in Au nucleus * high-x partons in the Cu nucleus

-2.2<v<-1.2

 $\langle x1 \rangle$

-1 -0.5 0 Log (x gluon)

U+U (new Geometry)

Higher energy density

Higher recombination

$$N_{J/\psi}^{stat} \propto N_c^2$$

R_{AA} in U+U

YR_{AA} at STAR

 R_{AA} for Y (1S) and Y (1S+2S+3S) as function of N_{part} . Stronger suppression for the higher states than Y (1S).

Yat PHENIX

arXiv:1404.2246

RAA similar to STAR. Model explains the data very well.

Future of quarkonia at RHIC

Au+Au (2014) and p+A (2015) dataset with additional detector capabilities from both experiments.

sPHENIX (Long term)

STAR

Talk by Marzia Rosati.

Summary

- Both PHENIX and STAR measured quarkonia states in a wide range of kinematic ranges and collision species.
- * The magnitude and trend of $\psi(2s)$ suppression in nuclear collisions is quite different from J/ψ . Nuclear crossing time does not explain the data.
- * In Cu+Au collision, the Cu going side is more suppressed than Au going side due to CNM effects, sensitive to the low x of the Au nuclei.
- * Measured Y R_{AA} consistent with melting of Y(2S) and Y(3S) states.
- New detector capabilities will allow more precise studies in near future.

BACK-UPS